Skip to content
MACH GROUP
Menu
  • Home
  • About
    • About MACH Group
    • Our Ethos
    • Meet The Team
    • Jobs
  • Contact Us
  • Acoustics
    • Our Acoustic Services
    • Building Design
    • Noise And Vibration Surveys
    • Environmental Noise Assessments
    • BS4142 Assessments
    • R&D
    • Portfolio
  • Energy
    • Our Energy Services
    • Daylight Modelling
    • Overheating Assessments
    • Energy Statements
    • Part L Calculations
  • Testing
    • Sound Testing
  • Products
    • About Our Products
    • The Honeycomb Attenuator
    • Applications
    • Product Key Features
    • Resources
  • Explore
    • MACH Books
    • MACH Videos
    • Download
blank
Posted by IT MACH

Eden Project Acoustics – MACH Acoustics Consultancy

9th April 2014Acoustic Design, Open Plan Spaces, Resources, Sustainable Acoustics, Video

blank
Posted by IT MACH

Lecture Theatre Design with Acoustic Modelling

3rd April 2014BB93, Lecture theatre, Resources, Reverberation time
Lecture Theatre Design with Acoustic Modelling

MACH Acoustics were appointed to carry out acoustic design for the refurbished Clattern Lecture Theatre. MACH created an acoustic model of the lecture space, calibrated by acoustic testing of the existing site. The design report concentrated on the two main factors effecting lecture theatre acoustics:

Speech Ineligibility

A standard requirement for a lecture theatre is to achieve good speech intelligibility of the speaker throughout the whole audience within the space. Speech intelligibility is maximised by increasing the signal to noise ratio, that is by maximising the loudness of speech and minimising the ambient noise level. Thus, the acoustical design of rooms for speech reduces to the consideration of four factors:

  • Providing optimum reverberation time.
  • Eliminating acoustic defects such as echoes and flutter echoes. 
  • Maximising the loudness in the audience. 
  • Minimising the background noise level in the room.

Speech intelligibility can be measured by the ‘Speech Transmission Index’, a percentage between 0% and 100%. BB93 requires that areas designed for speech should achieve ‘good’ speech intelligibility, corresponding to an STI of at least 60% across all areas of the audience.

Reverberation Time

Reverberation time is not only important for speech, but also important for audio visual presentations, as well as for amplified speech. For example if a film or a music track is being played from the AV system it is desirable to have a low reverberation time to ensure that amplified sound is clean and intelligible by reducing the build up of reverberant noise that can muddy the sound. This is seen clearly in spaces such as cinemas, which are heavily treated with absorptive material.


Onsite Tests

In order to accurately construct the model, MACH Acoustics carried out tests to determine the current levels of speech intelligibility across all areas of seating. Sound pressure levels were measured at various points around the room with a loud speaker playing in the position of a lecturer. The results are shown below. To put this into context, a 10 dB difference is usually perceived by the human hearing as a doubling in loudness.
Lecture Theatre Design with Acoustic Modelling

The results show that levels in the wider areas, even when at a comparable distance to a position in the centre of the room are significantly lower. Levels at the back of the room are very similar to those as wide seating positions in the first few rows. This occurs mainly for two reasons.

  • The seating arrangement spreads wide from where the lecturer would typically be stood. Hence the lecturer must constantly turn to address different sections of the audience in order to be heard. Consequently when he or she is facing towards one side of the room, the level heard on the other side of the room is lower. MACH would usually advise that a seating arrangement is a) in front of the speaker and b) has an angle from the speaker to the widest seating position that does not exceed 30○ (currently as much as 70-80○). 
  • The front portion of the ceiling is angled and reflective. MACH would usually advise this type of arrangement, as it aids in reinforcing sound levels towards the rear of the theatre by angling early sound reflections towards the back (as illustrated below). Hence as in this case, the sound is more evenly distributed across the majority of the audience behind the first few rows. This can be achieved by a sloped ceiling as in this case, or by suspending angled reflective panels (available in a range of aesthetically pleasing designs) above the area where the lecturer would usually stand.

Acoustic Model

An acoustic model was created, based upon the test data. The model allows us to assess the space by estimating the reverberation time and the spread of sound across the space, as well as the ‘Speech Transmission Index’ (STI) for speech intelligibility.


Lecture Theatre Design with Acoustic Modelling

Ideally MACH Acoustics will usually target an STI of at least 65%, ‘ideal’ speech intelligibility and it can be seen that this was the case in all areas of the theatre. The reverberation time in the existing space is on the high side for amplified AV presentations. It was therefore deemed desirable to reduce this in the design of the refurbished theatre.

New Design Options

Using the model, MACH Acoustics developed a number of design options for Kingston University, providing varying levels of acoustic treatment to reduce the reverberation time and allow for better travel of speech within the space.

Lecture Theatre Design with Acoustic Modelling

All options offered reduced reverberation time from 0.7s to 0.5s and under, with increased STI at back and room edges.Whilst MACH Acoustics had a recommended best options, the various methods allowed the client to select the best design style for the build.


blank
Posted by IT MACH

The NAT Vent Attenuator

28th April 2011NAT Vent Attenuator, Resources

The NAT Vent Attenuator

The Natural Vent Attenuator (NAT Vent) is a product specifically designed for low energy buildings which overcomes the problem between natural ventilation and acoustics. The NAT Vent can be incorporated into corridor walls to provide cross ventilation to an atrium, installed within ventilation stacks such to service multiple floors through a single stack or incorporated into the façade of a building to mitigate noise ingress from the surrounding environment. 

The NAT Vent Attenuator



The key advantage of the NAT Vent Attenuator is its exceptional acoustics performance; this performance has been achieved through extensive research and testing and by designing the product specifically around natural ventilation. The NAT Vent meets Building Bulletin 93 – ‘Acoustics Design for Schools’ requirement for cross ventilation and allows for naturally vented facades even on the noisiest of sites.


Click the preview below to download our brochure and learn more. 

The NAT Vent Attenuator



©2015 MACH Acoustics Terms of use Privacy policy Cookie policy BRISTOL 0117 944 1388 LONDON 07717 712603